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Abstract:

In this paper, we relate completely regular maps to a version of fibration between
Polish spaces. We present some characterizations of Polish fibrations, admitting a
regular averaging operator. Furthermore, we weaken some conditions on completely
regular maps in the Borel construction in our context. The findings of this paper gen-
eralize and extend some results in the literature.
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Introduction
The study of completely regular maps appeared as an application to the theory of
local triviality of fibrations (Dyer & Hamstrom 1958). The investigation of the prob-
lem of finding conditions which guarantee that a given map is a locally trivial fibra-
tion with a prescribed fibers has led to describing features of fibration theory which
are related to the theory of continuous selections in the realm of Polish spaces (sepa-
rable completely metrizable). A necessary condition to the mentioned problem is that
all fibers to be homeomorphic, and in the case of metric spaces, that all fibers of
close points to be homeomorphic under small transformations.
This article is devoted to completely regular maps (Dyer & Hamstrom 1958) and
their application in the problem of fibrations between Polish spaces. Following some
previous work including (Repovs et al. 1997; Ageev & Tymchatyn 2005; Dranishni-
kov 2016), the notions of completely regular maps, exact Milyutin maps, and Polish
fibrations are shown to be related.
In the literature, the approach that links regular maps to locally trivial fibrations be-
tween Polish spaces is established in (Repovs et al. 1993, 1997) in a relation with the
study of Milyutin maps. The historic development on the subject, in addition to an
extensive collection of related results can be found in (Repovs & Semenov 2013).
The classes of all (Milyutin) open maps between Polish spaces are characterized in
(Ageev & Tymchatyn 2005). Valov (Valov 2009) presents some properties of
Milyutin maps between Polish spaces. We further develop this idea by presenting
some characterizations of Polish fibrations, admitting a regular averaging operator.
It is still unknown whether every completely regular map is a Hurewicz fibration
(Dranishnikov 2016). However, it is proved in (Repovs et al. 1997) that a completely
regular map between Polish spaces is locally trivial fibration, provided its point-
inverses are homeomorphic to real line. Dranishnikov (Dranishnikov 2016) gives a
complete discussion of completely regular maps in some constructions for compact
metric spaces and compact fibers. This suggests a possible generalization to the case
of Polish spaces where some restrictions may be weakened. We obtain a generaliza-
tion where we drop the compactness condition.
Polish spaces form a large class of topological spaces, having various desirable prop-
erties and are quite manageable (Kechris 2012). In this article, by the fibrations of
Polish spaces (or Polish fibrations) we mean the case where general Hurewicz fibra-
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tions (Hurewicz 1955) of topological spaces are restricted to Polish spaces.

Preliminaries
In this section, we introduce some basic concepts and background related to Polish
spaces and fibration theory that are required in this paper. The content of this section
consists primarily of well-known definitions and facts from standard references. Fur-
ther details can be found in the mentioned references.
1. Polish Spaces, Completely Regular Maps, and Spaces of Probability Measures
(Bogachev 2007; Kechris 2012; Moschovakis 2009; Repovs & Semenov 2013)
A topological space X is completely metrizable if it admits a compatible metric, d
such that (X,d) is complete. A separable completely metrizable space is called a
Polish space. A Polish group is a topological group whose underlying space is
Polish.
Let g: X - Y. The space of all continuous R-valued functions on X endowed with
supremum norm is denoted by C(X).
CX)={f:X - R|f iscontinuous}
This space is a convex metric space. A correspondence
ACX)-»C), (AN = fg7 ),
is called a regular averaging operator, if A(f) is positive, the norm ||A]| = 1, and
A(hog)=h for f e C(X)and h € C(Y).
In this paper, every Polish space (X, d) is equipped with the Borel g-algebra By and
a measure p: X — [0, ). A measure is called a probability measure if u(X) = 1. Let
X be a Polish space. The space of all Borel probability measures on Xis denoted by
P(X). We endow P (X) with the weak-* topology. Equipped with the weak-* topolo-
gy, the space P(X) inherits many of the properties of X. Note that when X is compact
and Polish, P(X) becomes compact and Polish.
Definition 1 For a continuous map f: X — Y, the corresponding mapping
P(f):P(X) » P(Y) isdefined by

POWd = f $ofdy, wePX) and e C).
X

Moreover, for a continuous f:X —Y and g:Y — Z we have P(go f) = P(g)°
P(f) and P(ldX) = ldp(X)
Definition 2 Dirac measure §, is a two-valued probability measure on a space X that
is defined as

1, x€A
0x(4) = {0, x¢A
where A € B(X).

Definition 3 Amap f: (X,d) - (¥, d") between metric spaces is said to be complete-
ly regular if for each y € Y and € > 0, there exists a § > 0 such that if d'(y,y") < 6,
then there is an e-homeomorphism ¢: f~1(y) - f~1(y"), such that d(x, p(x)) < €,
forall x € f~1(y).

Definition 4 Let X, Y be completely regular spaces. Then a continuous surjection
f:X - Yis called a Milyutin mapping if there exists a continuous map v:y - P(X)
such that supp(vy) € f~'(y), y €Y.

2. Fibration Theory (Arkowitz 2011; Whitehead 1978).

Definition 5 Given a map p: E — B. We say that p has the homotopy lifting property,
denoted by HLP, if for every topological space X, every map f: X — E, and every
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homotopy H: X x I — B that begins with p o f we can then lift H to a homotopy
H:X x I - E that begins with f that is, such that
poH=H
H(x,0) = f(x).

If a map p: E - B has the HLP, then p is called a (Hurewicz) fibration. For a
fibration, E is called the total space and B the base space. Given a point b € B, then
F, = p~1(b) is the fiber of p at b. Thorough this paper, we will restrict the Hurewicz
fibrations to Polish spaces and will be called Polish fibrations.

Definition 6 Letp;: E; —» B; i = 1,2 be two fibrations. A map g: E; — E, is called
fiber-preserving if it sends fibers into fibers, that is, if there exists a continuous
h: B; = B, such that the square

E, —2— E,

BQT}BI

commutes. Fibrations p; are called fiber-homotopy equivalent if there are fiber-
preserving maps g:E; » E, and g":E, » E; and fiber-preserving homotopies
between gg’ and 15, and between g'g and 1, .We write A x, E for the pullback of
a given fibration p: E - B by amap g: A - B.

!

Ax,E —2 L E

|

A——"r7r—B

A fibration p: E — B with fiber F is fiber-homotopy trivial if it is fiber-homotopy
equivalent to the projection map prg: B X F — B. A fibration is locally trivial if there
is a covering {U,} of the base B, such that the restrictions p: p~1(U;) - U, are fiber-
homotopy trivial. In addition, when p is a locally trivial fibration and B is connected,
then all fibers of p are homeomaorphic.

Definition 7 7 Let X be a topological space and G a group. A continuous (right)
action of G on X is a continuous map 1: X X G - X, A(x,g) = x - g (denoted
(x,9) » x-g)suchthatx - 1 = x forall x € X and for all g € G. The orbit of x € X
is the set of points x - g for all g € G. The quotient X /G is the set of all orbits of the
group action on X, and the map : X — X/G sending x — X to its orbit is called the
orbit map.

Definition 8 The action is free if for each x € X the subgroup {g € G|x - g = x} is
the trivial subgroup {e}. The action is proper if the action map A is proper. Recall
that a map is called proper if the inverse images of compact sets are compact.

Main Results
Proposition 1 Let f:X — Y be a completely regular map between compact Polish
spaces. Let K be a closed subset of Y. If f admits a regular averaging operator, then
the restriction

flergo: 1K) > K
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admits a regular averaging operator.
Proof. Applying the space of probability measures functor P to f and f|s-1(
yields,

P(f): P(X) = P(Y), 1)

and
P(flp=10)): P(fTH(K)) = P(K). )

Since f is completely regular and admits a regular averaging operator, then by (Ar-
gyros & Arvanitakis 2002, Proposition 6), there exists an injection

g:P(Y) - P(X)
such that

P(f)eg= idP(Y)'
According to (Banakh 1995, Theorem 2.14), the functor P preserves inverse images,
that is,

P(f)"(P(K)) = P(f1(K)).

g(P(K)) < P (PK))
< P(f(K)).

glpao: P(K) = P(fH(K))
is a choice function of f|s-1(,. This implies that f| -1, admits a regular averaging
operator. Q.E.D.
Proposition 2 Let f: X — Y be an exact Milyutin map between Polish spaces with
v:Y = P(X). Let K # @ be an open subset of X. Then the set
W={uev®) | fO0)NK + 0}

Thus,
3)

Therefore,

is dense in P(X).

Proof. From the definition of the exact Milyutin map, and since u € P(X), we have
supp(uy) = f~1(¥). Thus; the result follows immediately from the fact that the set
{r € PX) | supp(u) N K # @}isdense in P(X) (Valov 2009, Lemma4.1). Q.E.D.
Theorem 1 Let X and Y be compact Polish spaces, and let f: X — Y be a completely
regular map. Then f admits a regular averaging operator if and only if there exists a
Polish subspace K c X such that f|x: K — Y is a homeomorphism.

Proof. Recall that when f is completely regular, all fibers f~*(y) of close points are
homeomorphic under small transformations. First, assume that f admits a regular
averaging operator. Then, there exists a continuous map v:Y — P(X) such that v is
supported by f~1(y) (Argyros & Arvanitakis 2002, Proposition 6). Since the spaces
are compact and Polish, then

supp(vy) = f1(¥), yEY. 4)
Define a continuous map ¢: Y — X such that
f oqa = idy, (5)
and
Hy = Say)- ®)

Then, ¢(Y) c X is closed and

fl(p(y): o) Y
is a homeomorphism. From Equation (4), f is an exact Milyutin map. Thus, by
(Ageev & Tymchatyn 2005), there exists a Polish subspace K < X such that
flx: K = Y is an open surjection with
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supp(vy) NK = (flx)7'(¥), Yy €Y. O]

Thus, for all y € Y, we obtain that
0+ (fl)™'0) =fTO)NK
= supp(vy) N K (8)
S {pO}
Therefore, K = ¢ (Y).
On the other hand, suppose that there exists a closed set K X such that
flg:K =Y
is a homeomorphism. Let
¢ =(lx) Y > K.
Then, for v:Y — P(X) defined by v, = §,(,y, y € Y, Equation (4) holds. Let
K =U,ey supp(v,).
Thus, forally e Y
supp(vy) =fO)NK
= (fl)™ ) ©)
={e}
Therefore, f is an exact Milyutin map, and consequently, f admits a regular averag-
ing operator. Q.E.D.
Example 1 Let E be the space E = S* x [0,1]/~ where ~ is the equivalence relation
S x[0,1] generated by (z,t) ~ (—z, —t), z € St and t € [0,1]. Her, we view the
circle St as a subset of €. Define the fibration f: E —» S such that f(z,t) = z. The
map f takes S x {0} c E, bijectively onto S*. Let g: S - St x {0}), g(2) = (z,0)
be the continuous inverse map to the restriction fls1,(, . Then, the map
flsixgy: S* x {0} —» S is a homeomorphism. On the other hand, E and S* are com-
pact metric spaces and f is an open surjection, then there exists a continuous linear
onto map u: C(E) - C(S?) defined by (w(h))(z) = h(f ~1(2)), satisfying the condi-
tion:
inf (h(f~1(2))) < W) (2) < sup(h(f~1(2)))
for every h € C(E) and z € S (Michael 1964). Hence, u is continuous with norm 1.
Moreover, u is a regular averaging operator since for any ¢ € C(S1),
@@ =¢°f(f(2) = ¢(2)

Thus, f is a continuous open surjection, which admit a regular averaging operator u.
Next, let a group G act freely on spaces X and E with the projections s and d onto

orbit spaces, then there is a commutative diagram called the Borel construction
(Borel 1960) as shown below.
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X = E
F\\ AT
- //’
f\“‘\\‘ ///’ m
s XxFE d
t
X/G f E/G
. o
X Xa E

It was shown in (Dranishnikov 2016) that if G is a compact group, E is a metric
space, and X is a compact space, then ¢ is completely regular. We obtain the follow-
ing generalization where we drop the compactness condition.
Theorem 2 Let G be a Polish group which acts freely and properly on Polish spaces
X and E. Then the projection ¢: X X; E = E /G in the Borel construction is com-
pletely regular provided, E /G is locally path connected and ¢ is a proper map.
Proof. Consider maps as defined above in Borel construction diagram. Let E/G be
locally path connected, and let ¢» be a proper map. Since the action of G is free and
proper, then ¢ is a fibration. Therefore, according to (Addis 1972), this implies that
for each ey € E/G and € > 0, there is a § > 0 such that the metric p(ey, e) < § im-
plies that there are small maps

a:p~(e) > ¢ (eo)

B:p~ (e0) > 97 (e)

aof =id

Boa=id
in the respective fibers. Let H, = B o a. Since « is a small map,

aoHi:p'(e) > ¢~ (ep)
is a small homotopy. Thus, if € > 0 is given, then there is a § > 0 such that
p(eg, e) < & implies that there is a small equivalence
a:¢~'(e) > ¢~ (eo)

for which p(a(x), x) < e. This yields complete regularity. Q.E.D.
Example 2 Let S = {z € C||z| = 1 and let p: S* - S'/Z, be the orbit map where
the group of integers modulo 2, Z,, acts on S by z » —z. This action is free and
proper and p is a locally trivial fibration and hence, p is an open map. Let S x S be

the product of two circles. Define an action of Z, on S x St by (z,w) » (i, -w).

The result is the quotient space S' Xz, S*. By Borel construction we have,
¢:St %y, ST > St/Z,

such that ¢([z,2']) = [p(2)] for every z,z' € S1. The fiber of ¢ is ST. Since the

Polish space S* x S is continuously mapped onto S* x;, S*, then S* x;, S is a

Polish space. Fix y € p~1(x). Since p is open, any sequence x,, converging to x in

S1/Z, admits a lift y,, converging to y in S with respect to orbit map p. Then, we

can find a sequence of homeomorphisms between the fibers ¢ ~1(x) and ¢~1(x,) in

and small homotopies
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St x4, S'  that converges to the identity map between ¢~'(x) and ¢~'(x).
Therefore, ¢ is completely regular.

Theorem 3 Let the spaces spaces X, E and G, and the map ¢ be as defined in Theo-
rem 2. Then the following hold:

1. If X is homeomorphic to the real line, then ¢ is a locally trivial fibration;

2. If X is perfect (i.e., without isolated points) with respect to ¢, then ¢ is a Milyutin
map.

Proof. Since X, E and G are all Polish spaces, Then X x, E is a Polish space.
According to (Repovs et al. 1997), every completely regular map between Polish
spaces with fibers homeomorphic to R is a locally trivial fibrations. The fiber of ¢ is
X, and since ¢ is completely regular, then ¢ is a locally trivial fibration. Thus, part 1
of Theorem 3 is proved. On the other hand, a result of (Valov 2009) shows that every
open surjection between Polish spaces with perfect fibers is a Milyutin map. By the
first part of Theorem 3, ¢ is a locally trivial fibration which implies that ¢ is an open
surjection. This proves part 2. Q.E.D.

Conclusion
In this article, the notion of fibration for Polish spaces are examined by establishing a
direction that combines effectively, the study of the descriptive set theory, measure
theory and fibration theory. The results show that the notions of completely regular
maps, exact Milyutin maps, and Polish fibrations can be linked in such a way that
further extends the concepts involved.
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